

Storylines with a Protagonist

Tim HegemannAlexander Wolff

The 32nd International Symposium on Graph Drawing and Network Visualization

Motivation

[Munroe. 2009 (clipping)]

Motivation

scientific publication history

Let's Talk About Style

Let's Talk About Style

Let's Talk About Style

Unavoidable Crossings

From Crossings to Block Crossings

From Crossings to Block Crossings

From Crossings to Block Crossings

• Fink, Hershberger, Suri, and Verbeek showed that bundling crossings in embedded grahs is NP-hard.

• Fink, Hershberger, Suri, and Verbeek showed that bundling crossings in embedded grahs is NP-hard.

- Fink, Hershberger, Suri, and Verbeek showed that bundling crossings in embedded grahs is NP-hard.
- They also discovered a connection to a minimum rectangle dissection problem (details follow).

- Fink, Hershberger, Suri, and Verbeek showed that bundling crossings in embedded grahs is NP-hard.
- They also discovered a connection to a minimum rectangle dissection problem (details follow).
- We adapted their algorithm to storylines.

- Fink, Hershberger, Suri, and Verbeek showed that bundling crossings in embedded grahs is NP-hard.
- They also discovered a connection to a minimum rectangle dissection problem (details follow).
- We adapted their algorithm to storylines.

Bundled Crossings for Storylines is efficiently solvable...

- Fink, Hershberger, Suri, and Verbeek showed that bundling crossings in embedded grahs is NP-hard.
- They also discovered a connection to a minimum rectangle dissection problem (details follow).
- We adapted their algorithm to storylines.

Bundled Crossings for Storylines is efficiently solvable...

...but only if we ignore meetings.

1. A quadrilateral *cell* for each crossing.

1. A quadrilateral *cell* for each crossing.

1. A quadrilateral *cell* for each crossing.

1. A quadrilateral *cell* for each crossing.

- 1. A quadrilateral *cell* for each crossing.
- 2. If two crossings *touch*, their cells share that *side*.

- 1. A quadrilateral *cell* for each crossing.
- 2. If two crossings *touch*, their cells share that *side*.

- 1. A quadrilateral *cell* for each crossing.
- 2. If two crossings *touch*, their cells share that *side*.

- 1. A quadrilateral *cell* for each crossing.
- 2. If two crossings *touch*, their cells share that *side*.

- 1. A quadrilateral *cell* for each crossing.
- 2. If two crossings *touch*, their cells share that *side*.

- 1. A quadrilateral *cell* for each crossing.
- 2. If two crossings *touch*, their cells share that *side*.

- 1. A quadrilateral *cell* for each crossing.
- 2. If two crossings *touch*, their cells share that *side*.

- 1. A quadrilateral *cell* for each crossing.
- 2. If two crossings *touch*, their cells share that *side*.

- 1. A quadrilateral *cell* for each crossing.
- 2. If two crossings *touch*, their cells share that *side*.

- 1. A quadrilateral *cell* for each crossing.
- 2. If two crossings *touch*, their cells share that *side*.

- 1. A quadrilateral *cell* for each crossing.
- 2. If two crossings *touch*, their cells share that *side*.

- 1. A quadrilateral *cell* for each crossing.
- 2. If two crossings *touch*, their cells share that *side*.

- 1. A quadrilateral *cell* for each crossing.
- 2. If two crossings *touch*, their cells share that *side*.
- 3. A quadrilateral face in the storyline drawing becomes a *corner*.

- 1. A quadrilateral *cell* for each crossing.
- 2. If two crossings *touch*, their cells share that *side*.
- 3. A quadrilateral face in the storyline drawing becomes a *corner*.

- 1. A quadrilateral *cell* for each crossing.
- 2. If two crossings *touch*, their cells share that *side*.
- 3. A quadrilateral face in the storyline drawing becomes a *corner*.

- 1. A quadrilateral *cell* for each crossing.
- 2. If two crossings *touch*, their cells share that *side*.
- 3. A quadrilateral face in the storyline drawing becomes a *corner*.

- 1. A quadrilateral *cell* for each crossing.
- 2. If two crossings *touch*, their cells share that *side*.
- 3. A quadrilateral face in the storyline drawing becomes a *corner*.

Given a rectilinear polygon with rectilinear holes, its interior can be efficiently dissected into the minimum number of nonoverlapping rectangles.

[Soltan, Gorpinevich '93]

Given a rectilinear polygon with rectilinear holes, its interior can be efficiently dissected into the minimum number of nonoverlapping rectangles.

[Soltan, Gorpinevich '93]

Theorem.

Given a storyline with a sequence X of pairwise crossings, Bundling Without Meetings can be solved in $O(|X|^2)$ time.

III. Meetings

1 2

meeting trapped inside a block crossing

meeting trapped inside a block crossing

meeting trapped inside a block crossing

disturbed meeting order

meeting trapped inside a block crossing

disturbed meeting order

meeting trapped inside a block crossing

disturbed meeting order

distorted meeting

meeting trapped inside a block crossing

disturbed meeting order

Evaluation

Dataset: 81 protagonists with their 5, 10, 15, and 20 most frequent coauthors (n = 324). "excess bundles" means #bundles with meetings – #bundles without meetings.

Build Storylines for Your Protagonist at publines.github.io

Open Questions:

- Can we efficiently solve bundling in the presence of meetings?
- Does the one-sided drawing style help with other esthetic criteria (e.g. wiggles)?

Comparison

crossings

block crossings

1-Sided \blacktriangle , 2-Sided \diamondsuit , and Median \bigcirc relative to GreedyBlocks. 81 large instances each with 21 characters.

Running Times

1-Sided ▲, 2-Sided ◆, Median ●, and GreedyBlocks ●. 81 large instances each with 21 characters.